Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor.

نویسندگان

  • Shaodong Sun
  • Xiaozhe Zhang
  • Yuexia Sun
  • Shengchun Yang
  • Xiaoping Song
  • Zhimao Yang
چکیده

For the first time, a facile, one-pot water/ethanol solution-phase transformation of Cu2(NO3)(OH)3 precursors into bicomponent CuO hierarchical nanoflowers is demonstrated by a sequential in situ dissolution-precipitation formation mechanism. The first stage produces a precursory crystal (monoclinic Cu2(NO3)(OH)3) that is transformed into monoclinic CuO nanoflowers during the following stage. Water is a required reactant, and the morphology-controlled growth of CuO nanostructures can be readily achieved by adjusting the volume ratio between water and ethanol. Such a bicomponent CuO hierarchical nanoflower serving as a promising electrode material for a nonenzymatic glucose biosensor shows higher sensitivity and excellent selectivity. The findings reveal that the different Cu(x)M(y)(OH)(z) (M = acidic radical) precursors synthesized in a water/ethanol reaction environment can be utilized to obtain new forms of CuO nanomaterials, and this unique water-dependent precursor-transformation method may be used to effectively control the growth of other metal oxide nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose.

Inspired by a sequential hydrolysis-precipitation mechanism, morphology-controllable hierarchical cupric oxide (CuO) nanostructures are facilely fabricated by a green water/ethanol solution-phase transformation of Cu(x)(OH)(2x-2)(SO4) precursors in the absence of any organic capping agents and without annealing treatment in air. Antlerite Cu3(OH)4(SO4) precursors formed in a low volume ratio be...

متن کامل

CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation

Present work focuses on the synthesis strategies for different CuO nanostructures along with associated formation mechanisms and their interesting fundamental properties, and promising applications in biological and environmental remediation. We present a variety of synthesis techniques for producing diverse types of CuO nanostructures with various morphologies such as nanoparticles, nanoleaves...

متن کامل

CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation

Present work focuses on the synthesis strategies for different CuO nanostructures along with associated formation mechanisms and their interesting fundamental properties, and promising applications in biological and environmental remediation. We present a variety of synthesis techniques for producing diverse types of CuO nanostructures with various morphologies such as nanoparticles, nanoleaves...

متن کامل

Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning

Three-dimensional (3D) porous ZnO-CuO hierarchical nanocomposites (HNCs) nonenzymatic glucose electrodes with different thicknesses were fabricated by coelectrospinning and compared with 3D mixed ZnO/CuO nanowires (NWs) and pure CuO NWs electrodes. The structural characterization revealed that the ZnO-CuO HNCs were composed of the ZnO and CuO mixed NWs trunk (~200 nm), whose outer surface was a...

متن کامل

Hierarchical Nanoflowers on Nanograss Structure for a Non-wettable Surface and a SERS Substrate

Hierarchical nanostructures of CuO nanoflowers on nanograss were investigated for self-cleaning and surface plasmonic applications. We achieved the hierarchical nanostructures using one-step oxidation process by controlling the formation of flower-like nanoscale residues (nanoflowers) on CuO nanograss. While the nanograss structure of CuO has a sufficient roughness for superhydrophobic characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 26  شماره 

صفحات  -

تاریخ انتشار 2013